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Nowadays, electromagnetic fields (EMFs) are ev-
erywhere around us. In fact, we live in an environ-
ment of EMF with naturally origin such as atmos-
pheric and geomagnetic and/or artificial (man-made) 
origin. Aquatic environment is not an exception and 
is also influenced by these EMFs.

Available evidence indicates that in aquatic envi-
ronment these fields originate naturally from physio-
logic processes within aquatic organisms (bioelectric 
signals such as muscle and nerve impulses), sea cur-
rents and earth electromagnetic field which originates 
from flow of charged particles in the liquid iron core 

of our planet [Milton et al., 2012; Krylov et al., 2014]. 
On the other hand, artificial electromagnetic field is 
generated around underwater power cables leading 
electricity to the land and then these electromagnetic 
waves diffuse in aquatic conductive medium. There 
is evidence of demonstrated effects of magnetic fields 
on water quality [Krezemieniewski et al., 2004; 
Khater and Ibraheim, 2015]. So, aquatic environment 
and its organisms may also be affected by these fields.

Available evidence have shown that some fish such 
as elasmobranch fish [Kalmijn, 1982], sharks [Kaijura, 
2003; Meyer et al., 2005], rockfish [Nishi and 
Kawanura, 2005], Japanese eel [Nishi et al., 2004], 
yellowfin tuna [Walker et al., 1984], trout and Coho 
salmon [Hellinger and Hoffmann, 2009] are magneto-
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sensitive. This sense helps fish in navigation [Walker, 
2003], orientation [Westberg, 1999; Nishi, 2006], mi-
gration [Yano, 1997], prey and mate detection, and 
homing [Milton et al., 2012]. A number of these spe-
cies such as trout and Coho salmon possess magnetite 
crystals (Fe3o4) which is highly concentrated in snout 
or anterior head [Wiltschko and Wiltschko, 2005; 
Hellinger and Hoffmann, 2009]. A line of evidence 
have shown that artificial EMFs may interact with 
physiologic behaviors and induce disturbances in fish 
behaviors including locomotor activity and spatial 
distributions [Krylov et al., 2014], prey detection and 
navigation [McMurray, 2007], and swimming behav-
ior [Bevelhimer and Cada, 2013].

The effect of magnetic field on aquatic organisms 
has received little attention [Bochert and Zettler, 
2004], and it is believed that freshwater species may 
respond differently compared to marine species 
[Öhman et al., 2007].

Common carp Cyprinus carpio is one of the im-
portant species of freshwater fish in northern parts 
of Iran with significant economic impact. Its wild spe-
cies is a favorite type among residents of northern 
Iran. Because of overfishing, the population of this 
species has been reduced over the years. For more 
production of this rich protein source, it is cultured 
in the ponds, lagoons and dams. A number of these 
sites which have been stocked with this popular spe-
cies are nearby power lines. This raises a question 
whether or not a non-migratory species such as 
Cyprinus carpio is magnetoreceptive and/or is affected 
by this artificial EMF.

Compared to other vertebrates, muscle tissues com-
prise a major percentage of the body weight in fish 
[Fabbri et al., 1998] which is valuable economically. 
Thus, its histological study is a useful tool in assess-
ing the effect of environmental parameters such as 
EMF on meat quality. In the current study, the effect 
of 50Hz electromagnetic field on muscle histopathol-
ogy of an important economic species of freshwaters 
of Caspian Sea, Cyprinus carpio was investigated.

MATERIALS AND METHODS

Electromagnetic field exposure system

Electromagnetic field exposure system consisted of 
a cylindrical coil, digital temperature controller, digi-
tal current intensity control system, oscilloscope, and 
a platform for placing the specimens inside the coil.

The artificial EMF was generated using a cylin-
drical coil, 42 cm in length (L), with inner diameter 
of 9.6 cm and outer diameter 11.5 cm, made of 980 
turn of 2.5 mm diameter enameled copper wire (N). 
Test organisms were positioned inside the coil on an 
elevated platform to ensure all of them received the 
same EMF intensity. Values in the center of the coil 
were calculated according to this formula: B= µ0NI/L, 
where B represents magnetic field intensity measured 
in Tesla (1 Tesla= 10,000 Gauss), I represents current 
intensity applied to the coil (Ampere), and µ0=0.256* 
10. Magnetic fields were generated by current flow, 
and field strength was controlled by changing elec-
trical current. Two digital ampere-meters showed the 
current intensities. Only alternating current (AC) was 
used in the present study. To create one-way current 
and to regulate different field intensities, equipment 
had one key for activating or deactivating processes. 
Finally, field strengths were checked using a Tesla- 
meter.

Coil was located in an east-west direction and elec-
tromagnetic field was parallel to long axis of fish 
body. An air conditioning system ventilated the coil 
chamber (one, 5 cm from the entrance of the coil and 
the other beneath the coil). Digital temperature con-
troller regulated temperature at 16℃. During ex-
posures, frequency was constant (50Hz) and electro-
magnetic field intensities varied from 0.1 mT (milli 
Tesla) to 7mT. There were two exposure times (30 
min. and 60 min.) for each EMF intensity. Experim-
ental set up is shown in Fig. 1.

Animals

Test organisms were fresh water common carp 
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Cyprinus carpio (length approx. 7-10 cm; mass 
approx. 15-20 gr) were collected from Shahid Rajaee 
Fish Farm, in the Sari city near southern coast of 
Caspian Sea, during April 2015. The experimental 
protocol was reviewed and approved by the Laboratory 
Animal Care Committee of Shahid Beheshti Uni-
versity. A total of 120 healthy fish were used in this 
study. After transport to the laboratory, they were 
kept in 60 L aquaria (10 fish per tank) at 16℃ temper-
ature and light/dark cycle, 12 hours each, for a period 
of two months. They were fed once a day with small 
pieces of fish food and permit to grow and adapt to 
laboratory conditions. Following acclimation, and at 
the beginning of experiments, the fish were 25-30 
grams in weight and 12-15 cm in length. They were 
classified randomly in one of two groups as follows 
with 10 fish per group:

(1) Control group: In this group, fish were placed 
on the platform inside the coil with no EMF exposure 
(the system was turned off). There were two control 
groups for two different exposure time (30 and 60 
minutes).

(2) Experimental group: This group was exposed 
to five different EMF intensities (0.1, 1, 3, 5 and 
7mT) at two different exposure times (30 and 60 mi-
nutes). Thus, we had 10 experimental or treated 

groups. Fish were exposed only once to EMF.
For EMF exposures, fish were placed in the acrylic 

experimental cubes (15 cm× 8 cm× 6 cm) filled with 
their aquarium water and placed inside the coil. After 
EMF exposure, the specimens  were returned to their 
aquaria for two weeks.

It should be noted that all of the fish in EMF ex-
posed groups appeared healthy during and at the end 
of the study and there was no mortality during two 
weeks after exposure.

Histopathological procedure

Two weeks after EMF exposure, fish were taken 
from their aquaria, killed and then their dorsal mus-
cles immediately removed, rinsed with saline solution 
(0.9% w/v concentration), and fixed in formalin sol-
ution (10% w/v concentration). They were embedded 
in paraffin, sectioned transversely (5µ) and stained 
with hematoxylin and eosin (H &E). Then muscle 
cross sections were examined and photographed using 
a light microscope (Optiphot 2; Nikon, Tokyo, Japan). 
Muscle fibers diameters and the distance between 
muscle fibers (m) were measured using AxioVision 
microscope software (viewer 4.8). For each fish 5 mi-
croscopic fields were evaluated.

Statistical analysis

Data are presented as mean ± standard error (Mean 
± SE) of ten fish. The data were analyzed using analy-
sis of variance (ANOVA) followed by Tukey test. 
P<0.05 was considered statistically significant. All 
calculations were performed using SPSS/PC software.

RESULTS

The effects of short and long term exposure to 
EMF on the dorsal muscle measurements are summar-
ized in Tables 1 and 2 respectively. Dorsal muscle 
photomicrographs of EMF exposed fish in the ex-
perimental groups are shown in Fig. 3- 10. Fig. 2 
shows dorsal muscle stained section of fish in the con-

Fig. 1. Experimental set up for EMF exposure to C. 
carpio.(A) Digital temperature controller, (B) Digital 
ampere-meter, (C) power supply, (D) Electromagnetic 
field generator.
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trol group. It should be mentioned that for brevity 
limited stained sections are included in the article.

Muscle fiber measurements showed significant dif-

ference between control and EMF exposed groups at 
both 30 min. (p<0.01) and 60 min. (p<0.001) exposure 
times. In addition, there was a significant difference 
between EMF exposed groups in two exposure times 

Fig. 2. Light micrograph after Hematoxylin-eosin stain-
ing of fish dorsal muscle of control group. Polygonal 
shaped muscle fibers with their nuclei in the periphery 
or at the edges of the fibers are seen in transverse 
section. Muscle fibers, endomysium and muscle tissue 
structure are normal. The diameter of muscle fibers is 
between 10-57 µm in this microscopic field.

Fig. 3. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 3mT (30 min.) 2 weeks after EMF 
exposure. The diameter of muscle fibers is between 
17-68 µm in this section.

Table 1. The effect of EMF short exposure time (30 min.) on dorsal muscle fiber measurements

EMF intensity (mT)
Muscle fiber diameter (µm) Distance between muscle fibers (µm)
Max Min Max Min

0
0.1
1

57.24±3.76
53.41±6.88
62.05±4.79

10.02±2.78
16.71±6.77
19.27±5.91

15.70±5.38
16.71±6.77
15.77±2.32

3.77±1.03
3.60±0.60
3.66±1.35

3
5
7

68.00±5.10
*72.57±6.03

**92.54±8.21

17.69±7.11
*30.02±7.63

**34.36±5.96

12.54±4.64
*11.48±3.38

**10.10±2.27

2.04±0.59
2.18±1.04

*1.61±0.47
Data are presented as mean±S.E.M. for 10 fish. *p<0.05,**p<0.01, *** p<0.001 vs. control (0 mT).

Table 2. The effect of EMF long exposure time (60 min.) on dorsal muscle fiber measurements

EMF intensity (mT)
Muscle fiber diameter (µm) Distance between muscle fibers (µm)
Max Min Max Min

0
0.1
1

54.12±4.36
53.96±5.20
51.83±3.76

14.32±2.80
12.16±5.40
13.25±3.91

14.23±4.27
16.71±6.77
19.30±2.32

2.63±0.69
3.86±0.94
4.64±1.80

3
5
7

54.90±4.28
55.28±7.08
59.32±3.92

11.36±4.11
*10.22±4.23
**8.99±5.71

*21.63±4.64
**27.48±5.38

***35.05±4.17

4.58±1.80
*5.95±1.25

**6.64±0.77
Data are presented as mean±S.E.M. for 10 fish. *p<0.05,**p<0.01, *** p<0.001 vs. control (0 mT).
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(p<0.01).
As shown in Fig. (3- 5), at shorter exposure time 

(30 min.) no pathologic lesion was seen in muscles 
of exposed group at different field intensities as com-
pared to the control.  Furthermore, the diameter of 
muscle fibers increased and the distance between fi-
bers decreased statistically in an intensity dependent 
manner (Table1). Statistical analysis showed that this 
increase in diameter of muscle fibers was significant 

at field intensities 5mT (p<0.05) and 7mT (p<0.01) 
and reached its peak value at field intensity of 7mT 
(92.54 ± 8.21µm). Indeed, post hoc analysis showed 
significant difference between EMF exposed groups 
at different filed intensities (p<0.05). There was sig-
nificant difference in diameter of muscle fibers at 0.1, 
1 and 3mT field intensities with those of 5 and 7mT. 
The distance between muscle fibers decreased sig-

Fig. 4. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 5mT (30 min.) 2 weeks after EMF 
exposure. The diameter of muscle fibers is between 34- 
72 µm in this field. A nerve is seen in the figure.

Fig. 5. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 7mT (30 min.) 2 weeks after EMF 
exposure. The diameter of muscle fibers is between 21- 
80 µm in this microscopic field.

Fig. 6. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 1mT (60 min.) 2 weeks after EMF 
exposure. The diameter of muscle fibers is between 13- 
51 µm and the distance between muscle fibers is 18-19 
µm in this microscopic field.

Fig. 7. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 5mT (60 min.) 2 weeks after EMF 
exposure. Disorganization of sarcoplasmic contractile el-
ements of a number of muscle fibers is shown here 
(X250).



56 Farzaneh Samiee and Keivandokht Samiee

nificantly at field intensities 5mT (p<0.05) and 7mT 
(p<0.01) compared to control group.

At longer exposure time (60 min.), as shown in 
Table 2, the distance between muscle fibers increased 
in a field intensity dependent manner. Statistical anal-
ysis showed that the distance between muscle fibers 
increased significantly at field intensities 3mT (p< 
0.05), 5mT (p<0.01) and 7mT (p<0.001) as compared 

control group and reached to its maximum value at 
field intensity of 7mT (Table 2 & Fig. 8). Furthermore, 
the diameter of muscle fibers decreased significantly 
compared to control groups in an intensity-dependent 
manner (p<0.01). Adverse effects of EMF appeared 
gradually in muscular tissue. These include contractile 
elements disorganization (Fig. 7), thrombosis (Fig. 9), 
atrophy and necrosis (Fig. 8 and 10).

DISCUSSION

Previous researches have shown that some aquatic 
species can detect and respond to EMF [Nishi et al., 
2006; Hellinger and Hoffmann, 2009; Milton et al., 
2012]. The literature on magnetoreception in common 
carp Cyprinus carpio, one of the most widely cultured 
species all over the world, is quite scarce.

In the current study, the effect of 50Hz electro-
magnetic field on muscle histopathology of Caspian 
Sea, Cyprinus carpio was investigated. Results showed 
EMF induced changes in the dorsal muscle histology 
of Cyprinus carpio. This study provides more evi-
dence that this non-migratory species is EMF sensi-
tive and can respond to changes in artificial EMF.

Fig. 8. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 7mT (60 min.) 2 weeks after EMF 
exposure. The distance between muscle fibers was more 
than control (mean ± standard error in control group = 
14.23 ± 4.27 µm) and was 35 µm in this microscopic 
field.

Fig. 9. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 7mT (60 min.) 2 weeks after EMF 
exposure. The distance between fibers is more than con-
trol and was 31 µm. An arteriole thrombus (in left side) 
is seen in this section.

Fig. 10. Light micrograph after Hematoxylin-eosin stain-
ing of dorsal muscle section of a fish in treated group 
at field strength of 7mT (60 min.) 2 weeks after EMF 
exposure shows muscle fiber atrophy and disorganiza-
tion of myofibrils (in right side) and necrosis (in left 
side). Eosinophilic cytoplasm and pyknotic nuclei of ne-
crotic cells are shown in this slide (X100).
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There is limited evidence in the literature that 
shows this species is sensitive to EMF. It has been 
previously reported that magnetic exposure altered the 
circulation in embryos and larvae of carp (Cyprinus 
carpio) during development and causes an increase 
in heart rhythm especially in early stage of develop-
ment [Formiciki and Winnicki, 1998]. Another study 
by Hart et al. [2012] has shown that carps orient 
themselves in the geomagnetic field (along the North- 
South axis) at traditional Christmas sale in plastic cir-
cular tubs. It is believed that an animal with the ability 
to orient its movements according to the geomagnetic 
field has a magnetic compass sense [Kennth et al., 
2000].

In our study, all EMF-exposed animals appeared 
healthy and there was no mortality during and at the 
end of study. It is possible that immune system stim-
ulation may be the mechanism of no mortality in EMF 
exposed groups in the present study. Consistent with 
the present observation, Cuppen et al. [2007] ob-
served EMF treatment reduced mortality rate in fan-
tail goldfish infected with ectoparasites (such as tri-
chodina). They reported that low frequency electro-
magnetic field exposure induced mild stress to cells 
and cytokines, alarms molecules, are produced which 
increase immune system activity.

Bochert and Zettler [2004] who studied exposure 
of several marine benthic animals such as North Sea 
prawn and round crab to static magnetic fields showed 
no difference in survival rate between control and ex-
perimental groups. Krzemieniewski et al. [2004] re-
ported that biomass decreased and mortality increased 
in European catfish (Silurus glanis) after exposure to 
a constant magnetic field. These differences in mor-
tality rate may be due to difference in magnetic field 
intensity, exposure time and/or difference between 
species.

Short Term Exposure

In our study, histological observations showed that 
in EMF-exposed groups with shorter exposure time 

(30 min.) no muscle pathologic changes occurred. 
Also the diameter of muscle fibers increased and the 
distance between fibers decreased in an intensity-de-
pendent manner, i.e. hypertrophy increased with in-
crease in field intensity. This indicates mild to moder-
ate muscle fiber hypertrophy as shown in Fig. 4, 5. 
This observation can be interpreted as positive effect 
of EMF on muscle growth process. There is a possi-
bility that this effect continues in longer duration 
(greater than 2 weeks) and may result in more muscle 
mass production with a positive economic impact.

Long Term Exposure 

For the experimental groups exposed for longer 
time (60 min.), negative effect of EMF was observed. 
A decrease in muscle fiber diameter and increase in 
distance between fibers was observed. This shows 
mild to severe muscle atrophy of majority of muscle 
fibers as shown in Fig. 6 and 8. At maximum field 
strength of 7mT, besides atrophy, thrombus was also 
observed which is a pathologic indicator, and can 
cause tissue damage due to ischemia. This condition 
may be irreversible and result in muscle necrosis.

Overall based on the results of this research, one 
can say that artificial EMFs exert dual effect on fish 
muscular tissue; in short term exposure (30 min.) 
EMF stimulates muscle growth (positive effect), 
whereas in long term exposure (60 min.), it can result 
in muscle necrosis (negative effect). The exact mecha-
nism of dual effects of EMF on fish muscle tissue 
modifications is not clear, but on the basis of avail-
able evidence in literature cellular stress response and 
oxidative stress are the most likely.

The precise mechanism of EMF on muscle hyper-
trophy is not clear. But there are evidence that have 
shown the effect of EMF on synthesis of stress pro-
teins such as hsp70, heat shock protein, and con-
tractile proteins such as actin and myosin [Blank, 
2012; Cheon et al., 2012; Rodrı´guez-De la Fuente 
et al., 2012]. These proteins synthetized during cel-
lular stress response which is a protective mechanism 
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of cells against environmental harmful stimuli that 
cause damage to macromolecules and increase cel-
lular resistance to adverse effects of EMF [Kultz, 
2005; Blank, 2012]. There is evidence that fish are 
sensitive to both chronic and acute environmental 
changes and exhibit a classical stress response [Gurcu 
et al., 2010].

We propose that existence of electromagnetic 
waves can be considered as environmental stress in 
our study which has hypertrophic effect due to pro-
duction of stress proteins such as contractile proteins 
and hsp70. In agreement to this hypothesis, Kee et 
al. [2008] reported hsp70 triggers cardiac hypertrophy 
in vitro and in vivo conditions. On the basis of avail-
able evidence, hsp70 induces in response to damaging 
stress in skeletal muscle and has a key role in muscle 
plasticity [Miyabara et al., 2012; Senf, 2013]. Indeed, 
hsp70 was identified in red skeletal muscle of stressed 
common carp [Poltronieri et al., 2008]. Other evi-
dences confirm stress response following electro-
magnetic field exposure [Tokalov and Gutzeit, 2004; 
Blank, 2009].

At longer exposure time (60 min.), it appears cel-
lular stress response attenuates with EMF intensity 
increase. Thus, cells are not able to produce enough 
stress proteins (such as contractile proteins and hsp70) 
against EMF effects to protect themselves. Under 
these conditions EMF tolerance develops. Our hy-
pothesis confirms findings of DiCarlo et al. [2002] 
who reported when EMF tolerance develops in the 
chick embryos, cytoprotection decrease. On the other 
hand, oxidative stress overcomes EMF- stress response. 
In another words, oxidative stress does not appear to 
be a strong inducer of stress proteins production under 
these conditions. There are some evidences which 
confirm this hypothesis [Ozdemirler et al., 2005; 
Adachi et al., 2009]. We propose both of these mech-
anisms including oxidative stress and stress response 
decrease cause disruption of cellular resistance and 
result in EMF induced adverse effects such as myofi-
brillar disorganization, muscle atrophy, thrombus for-

mation and muscle necrosis.
Oxidative stress appears to be an important mecha-

nism for biological response to EMF in different cel-
lular systems [Kovacic and Somanathan, 2010; 
Consales et al., 2012]. Increased EMF exposure can 
change cellular balance by generating reactive oxygen 
species (ROS) [SimkÓ, 2007; Canseven et al., 2008; 
Akdag et al., 2010]. Disruption of balance between 
ROS production and antioxidant defense may activate 
a cascade of events, leading to structural changes in 
muscle. There are evidences confirming the effect of 
oxidative stress on muscle waste [Buck and Chojkier, 
1996; Moylan and Reid, 2007], muscle atrophy 
[Powers et al., 2007; Aucello et al., 2009; Musarò 
et al., 2010], muscle pathogenesis [Musarò and Fulle, 
2009 ; Musarò et al., 2010; Betancor et al., 2013], 
and myofibrillar force decrease [Hardin et al., 2008]. 
Other studies showed that substances that interfere 
with oxidative stress prevent muscle atrophy and im-
prove its contractile characteristics [Arbogast et al., 
2007; Aleem et al., 2013]. Steinberg [2013] proposed 
oxidative stress and ROS production can lead to direct 
oxidation of many contractile proteins, resulting in 
sarcomere structural changes in muscle.

In this study, exposure to EMF at higher intensity 
in longer time exposure (60 min.) as shown in Fig. 
7 resulted in disorganization of contractile elements 
of a number of muscle fibers. This confirms findings 
by Ciejka et al. [2010] who showed that protein con-
centration decreased in the rat muscles homogenates 
after exposure to low frequency electromagnetic field. 
This change in contractile proteins and organelles in 
muscular tissue can result in muscle atrophy where 
proteolytic enzymes are activated and result in the 
muscle fiber shrinkage [Bonaldo and Sandri, 2013].

A study by Raeker et al. [2014] on myofibrillo-
genesis in zebrafish embryos showed that optimal stri-
ated muscle function depends on this high level my-
ofibrillar organization. Disruption of the muscle struc-
tural integrity, in turn, induces changes in its physiol-
ogy.
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In conclusion, we report for the first time that EMF 
interaction with muscular tissue of common carp C. 
carpio exhibits a dual effect depending on the field 
intensity, and exposure time. At shorter exposure time 
(30 min.), EMF stimulates muscle growth process. If 
confirmed by further research on the evaluation of 
muscle mass, application of this finding in aqua-
culture may result in more muscle mass production 
of this popular species, with positive economic 
impact. On the other hand, at longer exposure time 
(60 min.), EMF can damage muscle tissue and result 
in muscle necrosis. More research is required to eluci-
date precise mechanisms involved in muscle hyper-
trophy and pathologic changes.
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